學研新創
首頁 > 學研新創 > 智慧醫療與健康科技 >第十六屆
加入書籤
利用人工智慧輔助免疫螢光影像辨識及自體免疫抗體預測
免疫螢光檢測的影像判讀目前仍是以人工肉眼判讀,需由醫師或醫檢師進行。

郭昶甫、林器弘、羅淑芬、謝寶鳳、戴寶蓮、
陳宜凌、邱孟君、陳榮陞、夏秀鳳

抗核抗體(ANA)測試是常見免疫疾病篩選工具,螢光影像的型態暗示特定自體免疫抗體的存在。長庚醫院團隊開發了一個基於深度學習的應用程序來自動化抗核抗體檢測核型態識別,並能正確預測9種不同的特定自身抗體。目前核型態識別之正確率已達96%,抗體預測正確率達99%。此自體免疫抗體的免疫螢光影像分類系統及其分類方法能透過機器學習方式建立疾病分類模型,直接輸入細胞免疫螢光影像來預測對應疾病之類型。

本模型技術預測九種自體免疫抗體的結果,可協助醫師判斷病人可能發生的疾病,免疫疾病若能提早發現,將能及早進行控制延緩整個病程的進展。另由於預測精確性,可以減少再使用其他檢測確認免疫抗體的需求。依目前健保給付,抗核抗體免疫螢光檢測約330元。九種抗體檢測費用約4200元,對於病人及社會能節省許多的社會成本,故對於潛在風濕免疫的病人有潛在的助益。本系統在自體免疫抗體篩檢可大幅降低成本,未來若能進行大規模的篩檢,本系統能夠協助快速的判讀讓醫師能快速的找出可能病人的狀況,及早讓病人做更進一步的檢查,將能夠發揮本技術的價值。

評審推薦
1.利用深度學習方法進行螢光影像分析,進行自動化影像型態分類,協助醫師正確判讀抗核抗體螢光影像型態,並預測9種不同免疫抗體,加速流程,並大幅降低自體免疫抗體篩檢成本。
2.商品化的準備上考慮了系統的彈性、架構與安全性,對於使用者也考慮到感受的有用性、易用性和優使性的設計。
利用人工智慧輔助免疫螢光影像辨識及自體免疫抗體預測
臨床應用流程
軟體包裝與臨床實現 1
九種免疫螢光抗核抗體
風濕免疫疾病
郭昶甫醫師
風濕過敏免疫科團隊
醫療人工智能核心實驗室團隊
郭昶甫  
學歷 諾丁漢大學風濕、骨科、皮膚科醫學院博士
長庚大學臨床醫學研究所碩士
長庚大學醫學系學士
現職 林口長庚醫院風濕過敏免疫科主任
林口長庚醫院研究發展部主任
醫療人工智能核心實驗室主任
中華民國風濕病醫學會秘書長
英國諾丁漢大學榮譽副教授
經歷 林口長庚醫院巨量資料及統計中心主任

 

研發動態
 
第17屆國家新創獎 (2020) 精華集錦
 
白袍創業風氣興起!醫生也拚創新...
「第17屆國家新創獎」授獎典禮...
新創年度6強Demo Pitc...
新件參賽申請
新創精進申請
到訪人次:6,986,631
更新日期:2021-04-09
財團法人生技醫療科技政策研究中心 版權所有
Copyright © 2012 Research Center for Biotechnology and Medicine Policy (RBMP). All Rights Reserved