學研新創 - 智慧醫療與健康科技
以人工智慧的集合型模組,從脊椎側面X光影像,自動輔助判讀胸腰椎骨折
2021-12-27
周伯鑫醫師團隊/臺北榮民總醫院
周伯鑫、盧鴻興、劉建麟、張明超、王世典、吳宏達、陳泓勳、林希賢、姚又誠
集合型模組的穩定判讀
應用集成學習的概念,將三種人工智慧模組 (ResNet34、DenseNet121、DenseNet201)合而為一,形成集合型模組 (ensemble model),使得整體的判讀,有比較穩定且可信任的結果。將三個模組各取其優勢之處,同時運用於脊椎骨折判讀。只要三個單一模組之中,有兩個判讀有骨折,集合型模組就會認定此脊椎節可能有骨折。(圖一)
根據Genant分期,自動計算脊椎骨折等級
Grade I為 ≦20%至25%脊椎體高度減少。Grade II為26%至40%脊椎體高度減少。Grade III為≧41%以上脊椎體高度減少。只要集合型模組脊椎骨折節判斷正確,其骨折節分類等級,準確度為100%。利用電腦程式的自動計算骨折等級,可以節省臨床醫師,利用公式進行量測計算的時間。(圖二)
已於醫院臨床PACS系統實際使用
目前已於臺北榮總幾部特定的電腦,進行註冊後,便可以直接於臨床電腦操作與使用。本介面優點:1. 直接在PACS系統下,進行操作並上傳DICOM格式檔案,無須經過再次轉檔。2. 操作者只要在滑鼠上按右鍵”send to AI”鍵,等待大約60至90秒,再按一次"View AI Result"鍵,即可看到人工智慧判讀結果。(圖三)
提供雲端使用介面,直接於遠端使用
使用者可以從任何地方,將胸腰椎X光側面照的DICOM檔案,上傳至http://vf.biobank.org.tw/,即可進行脊椎骨折節的圈註與骨折自動分級之輔助診斷。(圖四)
評審推薦
1.由臺北榮民總醫院主導與交大共同開發以人工智慧於脊椎側面照映之X光影像,自動輔助判讀供腰椎骨折之應用,具跨領域之合作之特質。
2.集合三個單獨人工智慧模組的預測結果,集合型模組的操作使用介面,判讀結果和醫師之間有高度的一致性,可於臨床 (PACS)系統下直接使用
3.臨床資料集的訓練、驗證與測試和外部驗證接完成,從介面操作至自動判讀的結果呈現約60至90秒,符合預期之需求。
2.集合三個單獨人工智慧模組的預測結果,集合型模組的操作使用介面,判讀結果和醫師之間有高度的一致性,可於臨床 (PACS)系統下直接使用
3.臨床資料集的訓練、驗證與測試和外部驗證接完成,從介面操作至自動判讀的結果呈現約60至90秒,符合預期之需求。
NEW
2024年度精進成果
迄今本技術精進之研發進展如下: 1.(1)精進研發Development and validation of a deep learning-based algorithm for automated identification of pedicle screws on plain spine radiographs椎弓根螺釘辨識論文已獲得JOR Spine接受並刊登,Development a deep learning-based algorithm for identifying malignant vertebral metastasis on plain spine radiographs腫瘤轉移之新模型已進行外部驗證。 2.商轉應用:已與沐恩生醫光電股份有限公司就本技術簽訂技轉MOU,並按技術所有權人臺北榮民總醫院技轉相關規定進行技轉。 3.智財專利:已於113.8.21獲得台灣M659532專利 4.臨床/驗證:於112.9.7通過成大醫院IRB,編號A-ER-112-259,同意人體研究證明書,驗證績效良好。 5.其他:於112.6.21,通過國科會三年期研發補助計畫,計畫名稱為【利用深度學習跨域模組,從腰椎X光影像,自動判讀髖關節-脊椎症候群:針對12種病兆的辨認】,總經費為399萬
團隊簡介
|
本網站中所有資料(包括影音.文字.圖表.數據等) ,均屬於本中心或各該新創企業團隊之專屬財產,如有引用,請確實註明出處來源。
<完整資訊>
財團法人生技醫療科技政策研究中心 版權所有
Copyright © 2012 - 2024 Research Center for Biotechnology and Medicine Policy (RBMP). All Rights Reserved
Copyright © 2012 - 2024 Research Center for Biotechnology and Medicine Policy (RBMP). All Rights Reserved